Decentralized kinematic control of a class of collaborative redundant manipulators via recurrent neural networks

نویسندگان

  • Shuai Li
  • Sanfeng Chen
  • Bo Liu
  • Yangming Li
  • Yongsheng Liang
چکیده

This paper studies the decentralized kinematic control of multiple redundant manipulators for the cooperative task execution problem. The problem is formulated as a constrained quadratic programming problem and then a recurrent neural network with independent modules is proposed to solve the problem in a distributed manner. Each module in the neural network controls a single manipulator in the common task. The global stability of the proposed neural network and the optimality of the neural solution are proven in theory. Application orientated simulations demonstrate the effectiveness of the proposed method. & 2012 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A recurrent neural network for minimum infinity-norm kinematic control of redundant manipulators with an improved problem formulation and reduced architecture complexity

This paper presents an improved neural computation where scheme for kinematic control of redundant manipulators based on infinity-norm joint velocity minimization. Compared with a previous neural network approach to minimum infinity-non kinematic control, the present approach is less complex in terms of cost of architecture. The recurrent neural network explicitly minimizes the maximum componen...

متن کامل

A dual neural network for kinematic control of redundant robot manipulators

The inverse kinematics problem in robotics can be formulated as a time-varying quadratic optimization problem. A new recurrent neural network, called the dual network, is presented in this paper. The proposed neural network is composed of a single layer of neurons, and the number of neurons is equal to the dimensionality of the workspace. The proposed dual network is proven to be globally expon...

متن کامل

Obstacle Avoidance for Kinematically Redundant Manipulators Based on an Improved Problem Formulation and the Simplified Dual Neural Network

With the wide deployment of kinematically redundant manipulators in complex working environments, obstacle avoidance emerges as an important issue to be addressed in robot motion planning. In this paper, the inverse kinematic control of redundant manipulators with obstacle avoidance task is formulated into a (convex) quadratic programming (QP) problem with both equality and inequality constrain...

متن کامل

Adaptive RBF network control for robot manipulators

TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...

متن کامل

Inverse Dynamics Control of Flexible-Link Manipulators using Neural Networks

Title Type control of flexible link manipulators using neural networks PDF control of flexible link manipulators using neural networks 1st edition PDF control of robot manipulators in joint space advanced textbooks in control and signal processing PDF constructive neural networks PDF digital neural networks PDF complex valued neural networks PDF control of redundant robot manipulators theory an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 91  شماره 

صفحات  -

تاریخ انتشار 2012